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Selecting a Pump that Saves Energy

Selecting the right pump will save energy and improve sys-
tem performance. This TechData Sheet (TDS) provides instruc-
tion on how to select the most economical pump for the job
while still meeting all required performance criteria.

Pumps are generally one of two types, kinetic (or dynamic)
pumps or positive displacement pumps. Positive displacement
pumps can be further classified as reciprocating, blow case,
and rotary. Kinetic pumps can also be further classified as
centrifugal, peripheral, and special effect. The focus of this
TDS is on centrifugal pumps, which are the most common
types of pumps found in Navy shore facility installations. The
various types of centrifugal pumps are shown in Figure 1.

A centrifugal pump consists of an impeller, a casing that
houses the impeller, the motor (usually electric), and the shaft
to connect the motor to the impeller (see Figure 2). The fluid
enters the casing driven by either atmospheric pressure or fluid
pressure upstream from the pump, and is directed to the center
of the spinning impeller by the casing. A series of guide vanes
on the impeller force the fluid to the outside of the casing by
centrifugal force where is then exits through the discharge side
of the pump. The exiting fluid creates a vacuum on the inlet
side causing more fluid to enter the pump. If the pump has
non-condensable gases in the casing (such as air), the impeller
will only compress the gas and will not draw more fluid into
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Figure 1. Classification of centrifugal type pumps. (Courtesy of the Hydraulic Institute, Parsippany, NJ)
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the pump if the pump is higher than the source of the fluid.
For this reason, a means to prime the centrifugal pump must
be provided, unless it is a special type called a “self-priming
pump.”

The performance of a centrifugal pump is generally de-
scribed by five terms:

* Capacity or rate of flow, usually expressed in gallons
per minute.

* Head, which is the pressure increase of the fluid,
expressed in feet.

 Input power, usually brake horsepower (bhp).

 Efficiency, which is the ratio of work performed to
power input.

* Rotational speed in rpm.

All of these terms are interrelated; they are portrayed on a
graph of pump curves which are determined experimentally and
supplied by the pump manufacturer (see Figure 3).

Selecting a pump for a system that will minimize the initial
cost and the energy to run it, yet maintain the required perfor-
mance for the application, requires seven steps:

1.
2.

Determine the required pump capacity.
Determine the required total dynamic head of the pump
from the system head.

. Check pump manufacturers’ selections to choose a

standard pump and speed.

. Determine the efficiency and the required horsepower

of the pump.

. Compare various standard pumps and speeds to

determine the most efficient pump.

. Compare Net Positive Suction Head Available (NPSH,)

with Net Positive Suction Head Required (NPSH,) to
ensure that cavitation will not occur.

. Compare energy savings with first time cost and

maintenance expense, as well as other factors, such
as space, noise, and ease of control.
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Figure 2. Centrifugal pump.
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Figure 3. Typical manufacturer's published performance curve family for a centrifugal pump operating at a fixed speed and
with a range of impeller diameters. (Courtesy of Goulds Pumps, Inc., Seneca Falls, NY)

Step 1. The first step in selecting a pump is to determine
the required capacity of the pump. This will be determined by
what the application of the pump will be.

Step 2. The second step is to determine what the required
total dynamic head of the pump will be. This is determined by
the system in which the pump will be installed and is equal to
the total system head. The total system head is the sum of:

1. Static Head (H,)

2. Friction Head (H)
3. Pressure Head (Hp)
4. Velocity Head (H,)

Static head is the change in elevation (in feet) that the fluid
undergoes in the system without regard to the location of the
pump.

Friction head is the force required to overcome the internal
friction of the piping system. Note that this force changes with
the velocity of the fluid. In order to determine this value,

tables have been compiled that give the friction loss (in feet of
head loss per 100 feet of pipe) for various diameters of pipe at
different flow rates (see Table 1). To compute the total fric-
tion head for the system, divide the total length of pipe in the
system by 100 and multiply by the value given in the table. The
total head loss due to the piping is then added to the head loss
due to various fittings in the piping system. Each fitting has a
head loss which can be provided by the formula H = K x (V%
2g). V*2g is shown in the pipe friction table for different flow
rates and valve/fitting diameters. K is the resistance coefficient
for valves and fittings found in Figures 4(a) and 4(b). Each
graph is unique for each valve or fitting and gives K versus the
diameter of the fitting. For valves, note that K applies to a
fully open valve. If a valve will be used to throttle flow, the
manufacturer must be consulted to determine the value of K
for a partially open valve. All the fitting/valve head loss values
are summed and added to the head loss for the piping to deter-
mine the total friction head loss for the system.




Pressure head is the difference in pressure between the fluid
supply reservoir and the fluid delivery reservoir. This value is
zero if the supply and delivery reservoir pressures are the same
as would occur in two reservoirs open to the atmosphere. In
order to convert from psi or inches of vacuum, the following
equations are used:

Pressure: Hp(feet) =psix2.31/s.g.

Where s.g. is the specific gravity of the fluid, s.g. = 1.0
for water.

Vacuum: Hp(feet) = Vacuum (inches Hg) x 1.133/s.g.

Velocity head is the change in head of the fluid due to the
change in velocity through the pump. This value is usually
small and is sometimes ignored but may be significant in special
cases where the total dynamic head of the pump is smaller than
normal. Velocity head (H,) is given by the value V?/2g found
in the pipe friction tables. Since the diameter of the pipe on the
suction side of the pipe is normally larger than the discharge
side, this value will be different on either side of the pump and
the difference between the two values is the velocity head loss.

All four system head loss terms are added together to deter-
mine the total system head loss which will equal the total dy-
namic head of the pump.

In order to obtain a variety of flow rates and total dynamic
head values, the impellers are machined down from a maximum
size (limited by the size of the casing) to a minimum size
determined by the manufacturer. These various flow rates and
heads are then graphed by the manufacturer, resulting in a
curve similar to Figure 5. An entire family of pumps can then
be graphed for a specific rpm resulting in a family of curves
similar to Figures 6(a) and 6(b). The sizes of the pumps are
given by three numbers on the graph, e.g., 3 x 6 x 9. The first
number is the suction size, the second is the discharge size, and
the third is the maximum impeller diameter. All three are
expressed in inches. Various pump sizes and speeds that will
meet the required performance can be determined from the
manufacturer-provided family of pump curves.

Steps 3, 4, and 5. The performance curve for each pump
that meets the performance requirements should be evaluated
(see Figure 3). The required impeller diameter, pump effi-
ciency, required horsepower, and NPSH_ can be determined
from the specific curve. The horsepower requirements for the
various pumps and speeds can be compared to determine which
pump or speed will be the most efficient (lowest horsepower
requirement).

Step 6. Following selection of the most efficient pump, the
NPSH, should be calculated to verify that it is greater than the
NPSH_. NPSH_ is a characteristic of the pump inlet opening
and is determined during testing of the pump by the manufac-
turer for various operating conditions. The NPSH, is a charac-
teristic of the piping upstream of the pump and is the sum of
four variables (all expressed in feet):

e The pressure on the surface of the fluid in the supply
reservoir.

e The distance from the surface of the fluid to the centerline
of the pump’s impeller. If the fluid is higher than the
impeller’s centerline, this value is positive; if it is below
the centerline, this value is negative.

e The friction loss in the suction line is calculated from
Table 1. This value is negative. Since friction increases
with flow, the NPSH_ can only be calculated at a
specified flow rate.

* The vapor pressure of the liquid, which is also negative.

To prevent cavitation, NPSH, should always exceed NPSH..
Cavitation occurs when bubbles form in the fluid where the
pressure of the fluid drops below the vapor pressure of the
fluid. When the fluid reaches an area of higher pressure, the
bubbles collapse and the resulting shock waves create exces-
sive noise, reduce the efficiency of the pump, and can actually
damage the pump’s impeller, seal, and/or bearings.

Selecting the proper pump is the easiest and best way to
prevent cavitation. However, if an incorrect choice is made
and the pump cavitates, there are ways to eliminate it. The
most obvious is to increase the NPSH, by moving the pump to
a lower elevation. Friction losses on the suction side can also
be reduced by moving the pump closer to the supply reservoir.
Pressurizing the supply reservoir (e.g., with a blanket of nitro-
gen) will also raise the NPSH,. Finally, by decreasing the flow
rate, the NPSH_ will be raised and the NPSH_ will be de-
creased. Reducing the flow rate can be accomplished by add-
ing restriction (e.g., partially closing a throttle valve) down-
stream from the pump. However, this could increase power
required and lower efficiency.

Step 7. Since more efficient pumps have a higher first-time
cost, performing a life cycle cost analysis for different types of
pumps is beneficial. For instance, multistage pumps are usually
more efficient than single-stage pumps but their first-time cost
is higher. If electricity costs are excessive, the extra first-time
cost could be recovered in a short length of time, concluding
that the multistage pump has the lowest life cycle cost. An-
other point to consider is that running a pump at a higher speed
(at the same flow rate) is generally more efficient, but the
higher speed pump may have to be aligned more precisely and
require a higher annual maintenance. In order to determine
how much it will cost to run the pump, first convert the re-
quired pump horsepower to kilowatts (1 HP = 0.746 kW), then
multiply by the number of hours the pump is expected to run
per year and the cost of electricity in $/kW-hr. Now the vari-
ous costs of different pumps can be compared directly.

In order to choose the correct pump for the job, factors
other than cost may have to be considered. These factors
include such things as size, noise, and vibration. Multistage
pumps, although more efficient, are also physically large and
may not fit in the available space. While high speed pumps are




more efficient, a high speed pump motor will be louder than a
lower speed motor with the same horsepower rating, which
may be a concern if the pump is to be installed where the noise
level will be a nuisance. Sound attenuation also involves added
space and cost.

One final consideration from an economics standpoint is
over-sizing the pump. Frequently, purchasers of a pump will
increase the required flow rate by a margin to ensure that the
existing pump will be able to handle future increases to the
system’s output requirements. Others also increase the head
requirements by a margin to ensure that the pump will be able
to handle future corrosion product buildup and precipitates.
(Note: only the friction head component of the system head
should be increased since this is the only one that will change
over time.) Prior to increasing the pump size, the cost of
running the larger pump versus the smaller pump should be
calculated using the method outlined above. The difference in
energy cost may prove it cheaper in the long run to buy the
smaller pump first, and then replace the small pump with a
larger one when needed.

Once a pump is purchased and installed, the purchaser should
properly operate and maintain the pump to ensure that the
pump continues to perform its job as efficiently as possible.
Make certain that the impeller settings for open impellers and
the wear ring clearances are at their recommended minimums.
Clearances should be checked and adjusted as often as feasible
to minimize leakage (recirculation loss) from the discharge side
of the impeller to the suction side.

Do not operate the pump at a higher flow rate than neces-
sary, since the higher the flow rate, the more energy is con-
sumed. At the same time, ensure that no unnecessary throttling
is taking place in the system (i.c., throttling not necessary to
control cavitation and flow rate). If possible, ensure that throttle
valves are fully open and any restrictions such as reducers are
removed. If flow needs to be reduced, look into reducing the
impeller diameter or installing a variable speed motor as dis-
cussed below. If the pump is a multistage pump, consider de-
staging the pump during periods of low flow requirements.
Also consider installing multiple pumps in parallel or series to
provide greater flexibility in flow rates.

When a system has a variable flow requirement, rather than
operating a throttle valve which increases the system’s friction
head and thus decreases the efficiency of the pump, it is more
efficient to vary the speed of the pump by using a variable
frequency drive (VFD) on the motor. This operates by chang-
ing the speed of the drive motor and thus the pump. By
decreasing the flow rate by slowing down the pump, the fric-
tion head decreases since it is dependent on flow rate. The
efficiency of the pump will stay the same as at the higher flow
rate.

For additional information contact:

NFESC Code 20 at (805) 982-1465, DSN 551-1465




Table 1. Pipe friction: Water/Schedule 40 Steel Pipe
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Pipe friction: Water/Schedule 40 Steel Pipe (Continued)
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Pipe fiiction: Water/Schedule 40 Steel Pipe (Continued)
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5000 8.61 115 1.11 6.92 0.745 0.645 478 D35 | 0257 | 6000

B000 15 2.05 1.93 8.23 1.32 1.13 6.38 0.633 0.441 8000
19,000 14,3 .20 2.97 11.5 207 70 7.98 0.9689 0.6571 10,000
12,600 17.2 460 421 13.8 2.98 2.44 9.59 1.42 0.959 12,000
14,000 201 6.27 5,69 162 : 406 a.29 11.2 1.94 1.29 14,000
16,000 | 209 8.19 7.41 185 530 4,26 128 253 | 167 .t 16,000
18,000 25.8 104 9,33 208 6.71 535 144 3. - 210 18,000
20,000 287 128 115 221 8.28 6,56 16.0 3.96 2.58 20,000
22,000 .6 155 139 254 10.0 7.9t 17.6 T 479 310 22,000
24,000 4.4 18.4 16,8 277 11.9 939 19.9 570 367 24,000
26,000 37.3 2.6 182 17300 ' 140 1.0 207 6.69 4.29 26,000
28,000 40.2 25.1 222 177323 7 162 12.7 223 7.76 4,96 28,000
30,000 430 28.8 5.5 346 188 146 | 239 ¢ &g 5.68 30,000
34,000 39.2 23.9 187 7 274 U114 7.22 34,000
38,000 438 29.9 232 WA 1 143 $.00 38,000
42,500 35 17.5 110 42,000
48,000 | 367 209 13,2 45,000
50,000 ! 33,9 247 i 155 $0,000

(Courtesy of Hydraulic Institute, Parsippany, NI
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Figure 4(a). Resistance coefficients (K) for valves and fittings. (Courtesy of Hydraulic Institute, Parsippany, NJ)
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Figure 4(b). Resistance coefficients (K) for valves and fittings. (Courtesy of Hydraulic Institute, Parsippany, NJ)
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Figure 5. Head-capacity envelope for a constant speed centrifugal pump. (Courtesy of Marcel Dekker, Tnc., New York, NY)
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Figure 6(a). Typical family of envelope performance curves for a line of end section centrifugal pumps, shown at
3,600 rpm. {Courtesy of Goulds Pumps, Inc., Seneca Falls, NY)
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Figure 6(b). Typical family of envelope performance curves for a line of end section centrifugal pumps, shown at
1,800 rpm. (Courtesy of Goulds Pumps, Inc., Seneca Falls, NY)
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